173 research outputs found

    Circadian effects on stroke outcome – did we not wake up in time for neuroprotection?

    Get PDF
    The occurrence of stroke in humans peaks in the morning. A recent study revealed that time of day mitigates the therapeutic impact of neuroprotective paradigms. These findings might not only explain the previous failure of translation of neuroprotective therapies but inspire new paradigms in stroke chronopathophysiology research. Taking chronotype into account may complement the many factors that influence efficacy of experimental therapies in stroke

    PSS8 PREDICTIVE FACTORS OF GLAUCOMA TREATMENT COST IN GERMANY

    Get PDF

    KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia

    Get PDF
    Exacerbated activation of glutamate receptor-coupled calcium channels and subsequent increase in intracellular calcium ([Ca2+]i) are established hallmarks of neuronal cell death in acute and chronic neurological diseases. Here we show that pathological [Ca2+]i deregulation occurring after glutamate receptor stimulation is effectively modulated by small conductance calcium-activated potassium (KCa2) channels. We found that neuronal excitotoxicity was associated with a rapid downregulation of KCa2.2 channels within 3 h after the onset of glutamate exposure. Activation of KCa2 channels preserved KCa2 expression and significantly reduced pathological increases in [Ca2+]i providing robust neuroprotection in vitro and in vivo. These data suggest a critical role for KCa2 channels in excitotoxic neuronal cell death and propose their activation as potential therapeutic strategy for the treatment of acute and chronic neurodegenerative disorders

    Increased Expression of Foxj1 after Traumatic Brain Injury

    Get PDF
    Foxj1 is a member of the Forkhead/winged-helix (Fox) family of transcription factors, which is required for postnatal differentiation of ependymal cells and a subset of astrocytes in the subventricular zone. The subpopulation of astrocytes has the ability of self-renew and neurogenic potential differentiated into astrocytes, oligodendrocytes, and neurons. However, its expression and function in the central nervous system lesion are not well understood. In this study, we performed a traumatic brain injury (TBI) model in adult rats and investigated the changed expression of Foxj1 in the brain cortex. Western blot and immunohistochemistry analysis showed that the expression of Foxj1 gradually increased, reached a peak at day 3 after TBI, and declined during the following days. Double immunofluorescence staining revealed that Foxj1 was co-expressed with MAP-2 and GFAP. In addition, we detected that Ki67 had the co-localization with NeuN, GFAP, and Foxj1. All our findings suggested that Foxj1 may be involved in the pathophysiology of brain after TBI

    Genetic Ablation of Pannexin1 Protects Retinal Neurons from Ischemic Injury

    Get PDF
    Pannexin1 (Panx1) forms large nonselective membrane channel that is implicated in paracrine and inflammatory signaling. In vitro experiments suggested that Panx1 could play a key role in ischemic death of hippocampal neurons. Since retinal ganglion cells (RGCs) express high levels of Panx1 and are susceptible to ischemic induced injury, we hypothesized that Panx1 contributes to rapid and selective loss of these neurons in ischemia. To test this hypothesis, we induced experimental retinal ischemia followed by reperfusion in live animals with the Panx1 channel genetically ablated either in the entire mouse (Panx1 KO), or only in neurons using the conditional knockout (Panx1 CKO) technology. Here we report that two distinct neurotoxic processes are induced in RGCs by ischemia in the wild type mice but are inactivated in Panx1KO and Panx1 CKO animals. First, the post-ischemic permeation of RGC plasma membranes is suppressed, as assessed by dye transfer and calcium imaging assays ex vivo and in vitro. Second, the inflammasome-mediated activation of caspase-1 and the production of interleukin-1β in the Panx1 KO retinas are inhibited. Our findings indicate that post-ischemic neurotoxicity in the retina is mediated by previously uncharacterized pathways, which involve neuronal Panx1 and are intrinsic to RGCs. Thus, our work presents the in vivo evidence for neurotoxicity elicited by neuronal Panx1, and identifies this channel as a new therapeutic target in ischemic pathologies

    The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration

    Get PDF
    Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease
    • …
    corecore